
Change Detection and Correction Facilitation for Web Applications and Services

Alfredo Alba, Varun Bhagwan, Tyrone Grandison, Daniel Gruhl, Jan Pieper

IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120 USA

{aalba, vbhagwan, tyroneg, dgruhl, jhpieper}@us.ibm.com

Abstract

There are a large number of websites serving valuable

content that can be used by higher-level applications,

Web Services, Mashups etc. Yet, due to various reasons

(lack of computing resources, financial constraints etc.)

they are unable to provide Web Service APIs to access

their data. In their desire to incorporate the latest and

greatest technologies, as well as to adapt layouts that are

more preferred by users, websites undergo change over

time. These changes can range from minor, e.g. function

name changes, to major, e.g., shifting the web platform to

AJAX technologies. This paper addresses the problem of

detecting layout changes for websites which are unable to

provide any Web Service to access their content, yet do

not mind others harvesting said content.

1. Introduction

Each large website and portal on the Internet adheres to a

standard theme (template). These themes determine the

layout of the sites content. Some websites allow their

users to customize parts of the layout (for example portals

such as my.yahoo). In these cases, certain site content may

be deemed mandatory (e.g. site menu, username, location,

age & gender), while the users are able to pick and choose

the content to be displayed in other parts of the page (e.g.,

favorite-lists, images, comments etc.). Examples of such

websites include MySpace.com, Bebo.com, Lastfm.com,

Youtube.com etc. While these layouts and templates can

be explicit - for example using CSS, more often they are

simply the result of machine generation of HTML from

underlying data sources such as databases or content

repositories.

Contrary to conventional wisdom, web scraping [1]

remains the dominant and most reliable way for extracting

deep Web data [2]. Moreover, a large number of websites

simply do not have the resources or see the need for

providing Web Service APIs to access their data directly.

Web scraping describes the practice of automatically

extracting information from webpages for use in other

applications. Web scrapers generally utilize knowledge

about the sites layout to find and extract the desired

content. For example, a web scraper extracting stock

information from a website may know that the stock

symbol is contained in the first column of the second table

on the page.

For clients who routinely scrape information from

websites, detecting changes is critical to ensuring

consistent and correct usage of their service. Not only is

change detection needed, but it is important to determine

the type and level of change in order to better estimate the

restoration of services. A reliable means for gauging this

early in the notification and troubleshooting process is

invaluable to a timely resolution. In this paper, we

describe such a system, which was implemented as a part

of the Sound Index project [3]. This technology enabled

the Sound Index system to reliable deliver a top 1000 list

of artists and songs, in the face of changes to the web

pages of the data sources.

2. Methodology

Figure 1. The Creation Of Base Templates.

The methodology for change detection (Figures 1 & 2)

includes the following steps:

1) The creation of a template for expected data (Figure 1).

This step is typically the output of the web scrapers

(e.g., a key value pair containing 'artist->pageviews', or

'user->comments'). This template can be composed of:

a. metadata (e.g., key-value pairs of the type 'artist-

>pageviews' or 'user->comments')

b. actuals (e.g., key-value pairs of the type 'total-

artists = 100' or 'comments-per-page = 50')

c. rule-based (e.g., key-value pairs of the type 'artist-

>pageviews', where 'pageviews' is an integer)

DATA DATA

Template
Creation

Creates the baseline for
expected data. Performed

at system start time.

DATA DATA

TEMPLATES

Ingested Content

2) Anomaly detection. When the expected output differs

from the actual output, an anomaly is detected. The

specific anomaly that gets detected (e.g., 'no comments

found on user's page') is recorded in this step.

3) Correlation & Feedback. In this step, all of the

anomalies recorded in the ongoing run are collected and

correlated. For instance, if there were no comments

found on any user's page, it can indicate a major update

on the website. Alternatively, if only a small subset of

user pages changed, it can indicate a phased rollout of

new features/changes.

4) Notification. In this step, the results from the prior step

are sent to:

a. The automatic adaptation method, which attempts

to modify the extraction code of the web scraper,

such that the problem is resolved.

b. The operator. Our approach employs the open

source tool Nagios [4], but any other notification

application can serve the purpose. If step 4a fails,

the operator is notified of a critical error, if 4a

succeeds, the operator is merely made aware that

the system adaptation has occurred.

Figure 2. Framework for Change Detection and
Correction Facilitation.

The methodology for automatic adaptation includes the

following steps:

1. Determining "content fix points" (CFPs)

CFPs are web site data that doesn't change over time.

CFPs can occur either within the extracted data or close to

the extracted data. An example for CFPs within the

extracted data would be a list of possible stock symbols

that are always being extracted from a specific page. This

list can be used to find these symbols after a layout

change. An example of CFPs close to the desired data

would be surrounding text such as "Today's Stock

Market" in the header of the stock table.

2. Search.

Finding CFPs in the current version of the web page. Each

occurrence of a CFP becomes a candidate for future

extraction. The correct location is determined by finding

clusters of CFPs in close proximity and the web scraper

extraction information is modified accordingly.

3. Verification.

Applying the modified screen scraper to the web page and

judging the quality of the newly extracted data as

presented in "methodology for change detection".

Moreover, if the nature of the content is temporal, e.g. a

discussion board, older data can be re-crawled to receive a

version of old data in the new layout. The modified screen

scraper then needs to be able to extract these historic

entries properly as determined by comparison with

existing system data.

4. Partial Adaptation.

In instances where fully automatic adaptation is not

possible or applicable (e.g., the website doesn't contain

CFPs, or not all desired data on the website is made up of

CFPs), the system provides a technique for machine-

assisted change identification. This involves keeping an

old copy of the content (e.g., user comments), and upon

detecting change, locating the old content on the new

version of the webpage. This is then used to create a

'change record' (essentially a diff output) that can be

accessed by the operator/user to determine what changes

need to be made to conform to the new website layout.

In applying the above techniques in the Sound Index

system [3], we successfully performed change detection in

all cases when data source changes occurred, and

drastically reduced the fix turnaround times through

Partial Adaptation for major changes. Our future work

includes conducting a very thorough evaluation of our

approach.

4. Acknowledgements

We would like to thank the BBC, specifically Geoff

Goodwin (Head of BBC Switch), for their support and

encouragement.

5. References

1. http://en.wikipedia.org/wiki/Web_scraping

2. Alfredo Alba, Varun Bhagwan, Tyrone Grandison.

Accessing The Deep Web: When Good Ideas Go Bad".

The Proceedings of the ACM SIGPLAN International

Conference on Object-Oriented Programming, Systems,

Languages, and Applications (OOPSLA). Nashville,

Tennessee. October 2008

3. BBC Sound Index project,

http://www.almaden.ibm.com/cs/projects/iis/sound/

4. Nagios, http://www.nagios.org

Data
Ingestor

s

DATA

DATA

Anomaly
Detector

DATA

TEMPLATES

Anomaly
Store

Correlation &
Feedback

Notification Automatic
Adaption

Template
Creation

